

EAAM: EVALUATING SOLAR INVESTMENTS¹

The first assignment Sonja Petterson is given at EAMM is to evaluate the purchase of 31 solar power plants in the Puglia area of Southern Italy with a combined installed capacity of 30 MWp and an annual electricity production of 44 Gwh. With an MBA from Bergen Business School, having excelled in their Real Options course, Sonja believes that modern financial analysis should be used for this assignment. In addition, there would be several trips to Bari and Brindisi, so Sonja could warm up especially during the winter months. EAMM has received "initial pitches during the year to start negotiations on more than 1000 MWp of possible acquisition targets in Italy", so Sonja considers this assignment a nearly perpetual opportunity to invest in

_

¹ ©2015 Dean A. Paxson (Manchester Business School). This case is for the purpose of class discussion only and is not intended as an illustration of either good or bad business practices or politics. The character of Sonja Petterson is fictitious, but some of the solar PV material is from the EAM Prospectus January 2014 and Annual Report December 2014.

facilities with an expected physical life of up to 20 years. Currently the solar PV technology is such that a government subsidy is required to compete with coal or natural gas. Both the size of the possible government subsidy and the characteristic of the subsidy arrangements matter, along with the physical aspects of the facility and the level and volatility of market prices for electricity in Italy. Sonja is given a huge database of electricity prices and production, for every hour every day 2014-2015 for the whole of Italy and for four separate areas in the south. From all this data, she hopes to calculate reasonable estimates for price and quantity average levels, volatility and escalation/or deterioration over time to enter into the template for a real option capital budgeting spreadsheet, designed recently by Adkins and Paxson (2016).

An Easy Stochastic P, Q and S Model

Consider a perpetual opportunity to acquire a solar PV facility at a fixed investment cost K. The value of this investment opportunity, denoted by ROV_1 , depends on the amount of output sold per unit of time, denoted by Q, the market price per unit of output, denoted by P, and the subsidy per output unit, S. All of these variables are assumed to be stochastic and are assumed to follow geometric Brownian motion processes:

$$dX = \alpha_x X dt + \sigma_x X dZ \tag{1}$$

for $X \in \{P, S, Q\}$, where α denotes the instantaneous drift parameter, σ the instantaneous volatility, and dZ the standard Wiener process. Potential correlation between the variables is represented by ρ , r is the risk-free rate, and θ_X is the risk-neutral drift rate $(\theta=r-\alpha)$. When P,Q, or S are below \hat{P},\hat{Q},\hat{S} that justify immediate investment, the real option investment value is:

$$ROV_1 = A_1 P^{\beta_1} Q^{\gamma_1} S^{\eta_1}. \tag{2}$$

where β_1 , γ_1 and η_1 are the power parameters for this option value function. After the investment, the plant generates revenue equaling PQ + SQ, with the present value factor of this net revenue denoted k_{PQ} , and k_{SQ} (deducting operating costs).

$$k_{PQ} = \frac{1 - e^{-(r - \theta_P - \theta_Q)^*T}}{(r - \theta_P - \theta_Q)} \tag{3}$$

$$k_{SQ} = \frac{1 - e^{-(r - \theta_S - \theta_Q)^*T}}{(r - \theta_S - \theta_Q)}.$$
(4)

The value matching relationship, when the real option value upon exercise is equal to the net present value of the investment less the investment cost K (NPV), is:

$$A_{1}\hat{P}^{\beta_{1}}\hat{Q}^{\gamma_{1}}\hat{S}_{1}^{\eta_{1}} = k_{PO}\hat{P}\hat{Q} + k_{SO}\hat{S}_{1}\hat{Q} - K \tag{5}$$

 \hat{P} , \hat{Q} , \hat{S}_1 , β_1 , γ_1 , η_1 , A_1 is obtained by assuming $\hat{P} = P$, $\hat{Q} = Q$ as in Adkins and Paxson (2015, 2016), and then finding \hat{S}_1 , β_1 , γ_1 , η_1 , A_1 . An analytical solution for the five unknowns is:

$$A_{1} = k_{PO} \hat{P} \hat{Q} / \beta_{1} \hat{P}^{\beta_{1}} \hat{Q}^{\gamma_{1}} \hat{S}_{1}^{\eta_{1}}$$
(6)

and

$$\hat{S}_1 = \eta_1 k_{PO} \hat{P} / \beta_1 k_{SO} \tag{7}$$

This implies that

$$\gamma_1 = \beta_1 + \eta_1 \tag{8}$$

$$\eta_1 = 1 + \beta_1 \left(\frac{K}{k_{PO} \hat{P} \hat{Q}} - 1 \right) \tag{9}$$

 β_1 is the solution to a quadratic equation:

$$Q(\beta_1) = \beta_1^2 \{a\} + \beta_1 \{b\} - \{c\} = 0$$
 (10)

$$a = \left\{ \frac{1}{2} \sigma_{P}^{2} - \rho_{PS} \sigma_{P} \sigma_{S} + \frac{1}{2} \sigma_{S}^{2} + \frac{K^{2}}{2 \hat{P}^{2} \hat{Q}^{2} k_{PQ}^{2}} [\sigma_{Q}^{2} + 2 \rho_{QS} \sigma_{Q} \sigma_{S} + \sigma_{S}^{2}] + \frac{K}{\hat{P} \hat{Q} k_{PQ}} [\rho_{PQ} \sigma_{P} \sigma_{Q} + \rho_{PS} \sigma_{P} \sigma_{S} - \rho_{QS} \sigma_{Q} \sigma_{S} - \sigma_{S}^{2}] \right\}$$

$$b = \left\{ \theta_{P} - \theta_{S} - \frac{1}{2} \sigma_{P}^{2} - \frac{1}{2} \sigma_{S}^{2} + \rho_{PQ} \sigma_{P} \sigma_{Q} + \rho_{PS} \sigma_{P} \sigma_{S} - \rho_{QS} \sigma_{Q} \sigma_{S} + \frac{K}{\hat{P} \hat{Q} k_{PQ}} [\theta_{Q} + \theta_{S} + \frac{\sigma_{Q}^{2}}{2} + 2 \rho_{QS} \sigma_{Q} \sigma_{S} + \frac{\sigma_{S}^{2}}{2}] \right\}$$

$$c = -\left\{ r - \theta_{Q} - \theta_{S} - \rho_{QS} \sigma_{Q} \sigma_{S} \right\}$$

$$\beta_{1} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

$$(11)$$

It is easy to put these formulae into Excel as shown below.

_				
	A	В	C	D
1	l		SUBSIDIES MODEL I	
	INPUT		TEMPLATE per kwh	
3	P	0.40		
4	Q	1.00		
5 6	5	0.10 20		
7	ı'	7.00		
8	_	0.06		
	σ_{P}			
9	σ_Q	0.04		
10		0.08		
	110	0.00		
12		0.00		
13	ρ_{SQ}	0.00		
14	r	0.04		
15		0.00		
16		0.00		
17		0.00		
_	OUTPUT			EQS
19		0.0033	$0.5^*(B8^2) + 0.5^*(B10^2) - B12^*B8^*B10 + ((B7^2)/(2^*B33))^*((B9^2) + 2^*B13^*B9^*B10 + (B10^2)) + (B7/B32)^*(B11^*B8^*B9 + B12^*B8^*B9 - B13^*B9^*B10 - (B10^2)) + (B10^2) + (B10^2)$	10
20	b	0.0001	B15-B17-0.5*(B8^2)-0.5*(B10^2)+B11*B8*B9+B12*B8*B10-B13*B9*B10+(B7/B33)*(B16+B17+0.5*(B9^2)+2*(B13*B9*B10)+0.5*(B10^2))	10
21	β1	3.4542	(-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17+B13*B9*B10)))/(2*B19)	11
22	η1	1.9367	1+B21*((B7/(B28*B30*B29))-1)	9
23	ν1		B21+B22	8
24	'	683,0290	B32/(B21*(B28^B21)*(B29^B23)*(B25^B22))	6
_	S^1		(B22*B28*B30)/(B21*B31)	7
	ROV 1		IF(B5 <b25, b24*(b3^b21)*(b4^b23)*(b5^b22),b27)<="" td=""><td>2</td></b25,>	2
_	NPV EX		(B30*B28*B29)+(B31*B25*B29)-B7	RHS 5
28		0.4000	(000 020)7(001 020 029)-01	11100
	Q^	1.0000		
	PV kPQ		(1-EXP(-(B14-B15-B16)*B6))/(B14-B15-B16)	3
	PV kSQ		(1-EXP(-(B14-B17-B16)*B6))/(B14-B17-B16)	4
32	PQkPQ		B28*B29*B30	10
33	P^2Q^1kPQ^2	30.3239	(B28^2)*(B29^2)*(B30^2)	10

Solar Facility²

The solar facility acquisition price K is \in 114 million, or about \in 2590 per MWhr (1000 kWh) for expected production of 44.2 GWh (1000MWh) per annum. The plants in the acquisition have a two-tiered structure, a fixed FIT of around \in 309 per MWh and a variable RIP of about \in 60, for total gross revenue of around \in 16.3 million. Operating costs (and taxes) are around \in 2 million.

	Α	В	С	D	E
32	ALL	Total GWh		Total FIT	Per KWh
33		44.2		€ 13,657.70	
34	Weighted F	FIT			0.3090
35	RIP				0.0600
36	REVENUE		€ 2,652.00	€ 16,309.70	
37	R Distributi	on	16.26%	83.74%	
38	OP COST		€2,000.00		0.0452
39	kPV	7.9810	(1-EXP(-(B41-	B42-B43)*B40))/(B4	1-B42-B43)
40	Т	16			
41	IRR	10.00%			
42	θΡ	0			
43	θQ	0			
44	GPV	€114,206.21	(D36-C38)*	B39	0.3237
45	K	€114,000.00			2.5792
46	NPV	€206.21	B44-B45		0.0047
47	Net Market	Revenue			0.0148

As illustrated above the approximate IRR is around 10% on these projected revenues and expected operating costs, for a facility that has 16 years left (constructed in 2011). However, EAMM aims to extend the life of these assets beyond 20 years, and also to replace modules of the facilities with more efficient ones over the next 5-10 years.

Italian Solar Energy²

Although EAMM intends to sell most output to GSE (the Italian renewable energy executive authority, also providing the FIT), the RIP are based on the Italian Power Energy (IPEX) prices. There are at least five price series that might be representative of actual prices in the Puglia area, the National Price, and Prices in Central-South, South, Foggia and Brindisi, see

5

² Source: EAM Prospectus January 2014.

www.mercatoelecttrico.org. The FIT arrangements are complicated and change over time, as described in the EAM prospectus.

Empirics

From the Italian electricity daily price series per annum volatility is calculated as STDEV of LN(Price t/Price t-1)*SQRT (365). The annualized price drift might be 365*AVERAGE of LN(Price t/Price t-1). There are five price series running hourly from 2015 01 01 (January 1) to end November 11 30, over 40,000 prices. Sonja starts with a sample of daylight hours 8 am to 4pm for the first week in January 2015. She notices that these seven days include New Years Day, when most Italians are resting, and a weekend, so much of the apparent daily price volatility (for sunlight hours) is due to a type of "seasonality".

For the production output units, EAM reports that "about 19% of annual power output will be generated in the first quarter of the year, increasing to 33% in the second and 34% in the third before declining to 14% in the fourth." The actual power production by quarter for 2013 and 2014 is given in the Appendix "EAM Q 2013-2014" by facility. There is no evidence that solar output is constant, as modeled by some Nordic authors. Sometimes (July 2013) wind and solar provides all of the electricity supply in Italy during the daytime.

Investment Criteria

Although Norway has a distinguished history of real options, starting with Mossin (1968), and Lund and Øksendal (1991), and popularized by Bjerksund and Ekern (1995), not all Norwegian financial experts have completely adopted the real options methodology. EAMM reports using an investment criteria of a project internal rate of return of 7-12%. "The high degree of predictability in revenue and operating cost make the variations in cash flow from these power plants from year to year over their 20 year life-cycle low. The single most important variable in terms of IRR sensitivity is the electricity volume...but changes in the interest rate will also have a significant impact...Policy regimes where the power consumers (like in Italy) fund the FIT subsidies ...have proven to be more robust against policy risk, particularly against retroactive subsidy cuts and tax changes for power plants in operation."

References

Adkins, R., and D. Paxson. "Subsidies for Renewable Energy Facilities under Uncertainty" *The Manchester School*, (2015).

Adkins, R., and D. Paxson. "Analytical Investment Criteria for Subsidized Energy Facilities" Real Options Conference, Norway (2016).

Bjerksund, P. and S. Ekern."Managing Investment Opportunities under Price Uncertainty: From 'Last Chance' to 'Wait and See' Strategies", *Financial Management* 19 (1990), 65-83.

Boomsma, T. and K. Linnerud. "Market and Policy Risk under Different Renewable Energy Support Schemes" *Energy* 89 (2015), 435-448.

Lund, D. and B. Øksendal (eds.), *Stochastic Models and Option Values: Applications to Resources, Environment and Investment Problems*, (1991) North-Holland, Amsterdam.

Mossin, J. "An Optimal Policy for Lay-up Decisions." *Swedish Journal of Economics*, 70 (1968), 170-177.

EVALUATING SOLAR INVESTMENTS: CASE QUESTIONS

- 1. Substituting your calculations of the electricity price and quantity of production drifts, correlation and volatility, what is the FIT (S) threshold that would justify making this investment now for K?
- 2. What should Sonja suggest paying if the FIT=€308 per MWh?
- 3. What is this acquisition worth if the FIT disappear?
- 4. Given P,Q, S and T, which of the ten inputs should be Sonja's primary focus?

Data/Date (YYYYMMDD)	Hour	PUN	BRNN	CSUD	FOGN	SUD	PUN	BRNN	CSUD	FOGN	SUD	PUN	BRNN	CSUD	FOGN	SUD	PUN	BRNN	CSUD	FOGN	SUD	
20150101 20150101 20150101	2 3	52.33 49.89 39.10	51.10 49.00 39.10	51.10 49.00 39.10	51.10 49.00 39.10	51.10 49.00 39.10																
20150101 20150101	5	35.87 33.40	35.87 33.40	35.87 33.40	35.87 33.40	35.87 33.40																
20150101 20150101 20150101	6 7 8	36.47 39.10 44.52	36.57 39.10 45.21	36.57 39.10 45.21	36.57 39.10 45.21	36.57 39.10 45.21	44.52	45.21	45.21	45.21	45.21											
20150101	9	38.43 40.38	40.00 40.80	40.00 40.80	40.00 40.80	40.00 40.80	38.43 40.38	40.00 40.80	40.00 40.80	40.00 40.80	40.00 40.80											
20150101 20150101 20150101	11	38.53 38.80 38.85	38.80 38.80 38.85	38.80 38.80 38.85	38.80 38.80 38.85	38.80 38.80 38.85	38.53 38.80 38.85	38.80 38.85	38.80 38.80 38.85	38.80 38.80 38.85	38.80 38.80 38.85											
20150101	13 14 15	38.80 38.85	39.64	40.01	40.01	40.01	40.01															
20150101 20150101	16 17	51.10 55.50	49.95 54.69	49.95 54.69	49.95 54.69	49.95 54.69																
20150101 20150101 20150101	18 19 20	62.20 58.90 56.96	61.90 58.20 57.88	61.90 58.20 57.88	61.90 58.20 57.88	61.90 58.20 57.88																
20150101 20150101	21 22	55.99 53.12	57.87 53.63	57.87 53.63	57.87 53.63	57.87 53.63																
20150101 20150101 20150102	23 24 1	49.35 44.89 49.81	49.46 43.00 48.50	49.46 43.00 48.50	49.46 43.00 48.50	49.46 43.00 48.50																
20150102 20150102 20150102	2	41.01 38.98	39.10 37.00	39.10 37.00	39.10 37.00	39.10 37.00																
20150102	5	35.28 36.33 40.60	33.00 34.19 38.85	33.00 34.19	33.00 34.19 38.85	33.00 34.19																
20150102 20150102 20150102	6 7 8	52.30 56.77	51.35 56.15	38.85 51.35 56.15	51.35 56.15	38.85 51.35 56.15	56.77	56.15	56.15	56.15	56.15											
20150102 20150102	9	64.24 64.25	63.98 63.98	63.98 63.98	63.98 63.98	63.98 63.98	64.24 64.25	63.98 63.98	63.98 63.98	63.98 63.98	63.98 63.98											
20150102 20150102 20150102	11 12 13	64.84 62.92 58.45	64.75 59.36 57.92	64.75 63.04 57.92	64.75 59.36 57.92	64.75 59.36 57.92	64.84 62.92 58.45	64.75 59.36 57.92	64.75 63.04 57.92	64.75 59.36 57.92	64.75 59.36 57.92											
20150102 20150102 20150102	14	58.45 66.10	57.92 66.10	57.92 66.10	57.92 66.10	57.92 66.10	58.45 66.10	57.92 66.10	57.92 66.10	57.92 66.10	57.92 66.10	62.00	61.27	61.73	61.27	61.27	0.45		ULY RETUR	RN" 0.43	0.43	
20150102 20150102	16 17	69.83 70.20	69.96 70.36	69.96 70.36	69.96 70.36	69.96 70.36																
20150102 20150102 20150102	18 19 20	75.00 68.80 65.56	75.00 72.21 72.78	75.00 72.21 72.78	75.00 72.21 72.78	75.00 72.21 72.78																
20150102 20150102	21 22	61.09 58.31	67.03 63.99	67.03 63.99	67.03 63.99	67.03 63.99																
20150102 20150102 20150103	23 24 1	55.90 52.69 50.96	57.99 51.60 49.78	57.99 51.60 49.78	57.99 51.60 49.78	57.99 51.60 49.78																
20150103 20150103	2	41.90 37.81	40.14 37.81	40.14 37.81	40.14 37.81	40.14 37.81																
20150103 20150103	4 5	37.57 37.15	37.57 37.15	37.57 37.15	37.57 37.15	37.57 37.15																
20150103 20150103 20150103	6 7 8	37.81 49.60 56.01	37.81 48.50 55.34	37.81 48.50 55.34	37.81 48.50 55.34	37.81 48.50 55.34	56.01	55.34	55.34	55.34	55.34											
20150103 20150103	9 10	60.41 60.51	60.00 60.10	60.00 60.10	60.00 60.10	60.00 60.10	60.41 60.51	60.00 60.10	60.00 60.10	60.00 60.10	60.00 60.10											
20150103 20150103 20150103	11 12 13	55.22 53.75 52.00	54.43 52.89 50.99	54.43 52.89 50.99	54.43 52.89 50.99	54.43 52.89 50.99	55.22 53.75 52.00	54.43 52.89 50.99	54.43 52.89 50.99	54.43 52.89 50.99	54.43 52.89 50.99											
20150103 20150103	14 15	51.91 53.16	50.87 52.19	50.87 52.19	50.87 52.19	50.87 52.19	51.91 53.16	50.87 52.19	50.87 52.19	50.87 52.19	50.87 52.19	55.37	54.60	54.60	54.60	54.60	-0.11	-0.12	-0.12	-0.12	-0.12	
20150103 20150103 20150103	16 17 18	55.54 59.53 63.54	54.76 58.91 63.20	54.76 58.91 63.20	54.76 58.91 63.20	54.76 58.91 63.20																
20150103 20150103 20150103	19 20	58.06 55.44	58.77 58.71	58.77 58.71	58.77 58.71	58.77 58.71																
20150103 20150103	21 22	53.14 47.34	56.19 48.99	56.19 48.99	56.19 48.99	56.19 48.99																
20150103 20150103 20150104	23 24 1	43.30 41.14 40.11	41.40 39.10 38.85	41.40 39.10 38.85	41.40 39.10 38.85	41.40 39.10 38.85																
20150104 20150104	2	34.51 27.00	34.43 27.00	34.43 27.00	34.43 27.00	34.43 27.00																
20150104 20150104 20150104	5 6	19.40 18.00 21.00	19.40 18.00 21.00	19.40 18.00 21.00	19.40 18.00 21.00	19.40 18.00 21.00																
20150104 20150104 20150104	7	38.51 44.56	38.51 44.56	38.51 44.56	38.51 44.56	38.51 44.56	44.56	44.56	44.56	44.56	44.56											
20150104 20150104 20150104	9 10 11	51.09 53.57 52.21	50.00 52.65 51.15	50.00 52.65 51.15	50.00 52.65 51.15	50.00 52.65 51.15	51.09 53.57 52.21	50.00 52.65 51.15	50.00 52.65 51.15	50.00 52.65 51.15	50.00 52.65 51.15											
20150104 20150104 20150104	12	51.01 47.24	49.78 45.66	49.78 45.66	49.78 45.66	49.78 45.66	51.01 47.24	49.78 45.66	49.78 45.66	49.78 45.66	49.78 45.66											
20150104 20150104	14 15	42.14 41.17	40.14 39.10	40.14 39.10	40.14 39.10	40.14 39.10	42.14 41.17	40.14 39.10	40.14 39.10	40.14 39.10	40.14 39.10	47.87	46.63	46.63	46.63	46.63	-0.15	-0.16	-0.16	-0.16	-0.16	
20150104 20150104 20150104	16 17 18	50.53 54.69 63.91	49.30 53.79 63.74	49.30 53.79 63.74	49.30 53.79 63.74	49.30 53.79 63.74																
20150104 20150104	19 20	58.76 60.25	61.99 64.00	61.99 64.00	61.99 64.00	61.99 64.00																
20150104 20150104 20150104	21 22 23	60.31 54.89 50.45	64.00 53.93 49.10	64.00 53.93 49.10	64.00 53.93 49.10	64.00 53.93 49.10																
20150104 20150104 20150105	23 24 1	50.45 47.22 47.72	49.10 45.61 47.72	49.10 45.61 47.72	49.10 45.61 47.72	49.10 45.61 47.72																
20150105 20150105	2	39.10 35.21	39.10 35.21	39.10 35.21	39.10 35.21	39.10 35.21																
20150105 20150105 20150105	5 6	32.43 33.15 38.85	32.43 33.15 38.85	32.43 33.15 38.85	32.43 33.15 38.85	32.43 33.15 38.85																
20150105 20150105	7	48.89 60.36	48.89 60.03	48.89 60.03	48.89 60.03	48.89 60.03	60.36	60.03	60.03	60.03	60.03											
20150105 20150105 20150105	9 10 11	64.07 64.55 56.12	63.98 64.50 55.49	63.98 64.50 55.49	63.98 64.50 55.49	63.98 64.50 55.49	64.07 64.55 56.12	63.98 64.50 55.49	63.98 64.50 55.49	63.98 64.50 55.49	63.98 64.50 55.49											
20150105 20150105	12	54.25 51.94	53.50 51.00	53.50 51.00	53.50 51.00	53.50 51.00	54.25 51.94	53.50 51.00	53.50 51.00	53.50 51.00	53.50 51.00											
20150105 20150105	14 15	51.38 55.16	50.39 54.45	50.39 54.45	50.39 54.45	50.39 54.45	51.38 55.16	50.39 54.45	50.39 54.45	50.39 54.45	50.39 54.45	57.23	56.67	56.67	56.67	56.67	0.18	0.19	0.19	0.19	0.19	
20150105 20150105 20150105	16 17 18	64.09 64.33 68.56	64.00 64.25 68.64	64.00 64.25 68.64	64.00 64.25 68.64	64.00 64.25 68.64																
20150105 20150105	19 20	67.02 63.64	67.00 65.26	67.00 65.26	67.00 65.26	67.00 65.26																
20150105 20150105 20150105	21 22 23	60.51 55.10 52.37	64.00 58.00 52.10	64.00 58.00 52.10	64.00 58.00 52.10	64.00 58.00 52.10																
20150105 20150106	24 1	52.04 50.91	51.00 49.78	51.00 49.78	51.00 49.78	51.00 49.78																
20150106 20150106	3	45.21 38.80 35.00	45.21 38.80	45.21 38.80	45.21 38.80	45.21 38.80																
20150106 20150106 20150106	5 6	35.00 33.43 37.58	35.00 33.43 37.58	35.00 33.43 37.58	35.00 33.43 37.58	35.00 33.43 37.58					0											
20150106 20150106	7 8	43.50 52.00	43.50 52.00	43.50 52.00	43.50 52.00	43.50 52.00	52.00	52.00	52.00	52.00	S											
20150106 20150106 20150106	9 10 11	52.89 52.05 50.63	52.00 51.04 50.28	52.00 51.04 50.28	52.00 51.04 50.28	52.00 51.04 50.28	52.89 52.05 50.63	52.00 51.04 50.28	52.00 51.04 50.28	52.00 51.04 50.28	52.00 51.04 50.28											
20150106 20150106	12 13	49.10 47.97																				
20150106 20150106	14 15	45.11 46.87	45.11 45.44	45.11 45.44	45.11 45.44	45.11 45.44	45.11 46.87	45.11 45.44	45.11 45.44	45.11 45.44	45.11 45.44	49.58	49.12	49.12	49.12	49.12	-0.14	-0.14	-0.14	-0.14	-0.14	
20150106 20150106	16 17	53.40 58.41	52.49 57.89	52.49 57.89	52.49 57.89	52.49 57.89																

Data/Date (YYYYMMDD)	Ora Hour	Italia / Total Italy	BRNN	CSUD	FOGN	SUD	PUN	BRNN	CSUD	FOGN	SUD	PUN	BRNN	CSUD	FOGN	SUD	PUN	BRNN	CSUD	FOGN	SUD	
20150101 20150101	1 2	23,671 22,813	2,230 2,236	2,545 2,591	409 414	2,602 2,603																
20150101 20150101 20150101	3 4 5	21,949 20,840 20,157	2,097 1,308 1,299	2,611 2,613 2,129	417 420 419	2,677 2,758 2,685																
20150101	6 7	20,157 20,037 20,983	1,309 2,159	2,129 2,562 2,471	418 524	2,666 2,545																
20150101	8	21,780 22,191	2,218	2,401	530 531	2,267	21780.33 22190.64	2218.34 1872.33	2401.27 2520.37	530.10 531.49	2266.93 2427.53											
20150101	10	23,364 24,369	1,575	2,747 2,972	533 536	2,781 3,173	23363.52 24369.15	1575.16 1338.55	2746.53 2972.03	533.09 535.89	2780.96 3173.02											
20150101 20150101	12	25,206 25,750	1,391	3,218 3,220	536 537	3,393 3,453	25206.33 25749.68	1390.75 1799.64	3218.06 3219.78	536.42 537.15	3393.26 3452.67											
20150101 20150101	14 15		1,365 1,817	3,068 2,898	532 526	3,064 2,585	24534.39 23560.28	1364.72 1816.52	3068.34 2898.41	532.02 526.29	3063.54 2584.88	23844.29	1672.00	2880.60	532.81	2892.85						
20150101 20150101	16 17	24,036 25,825	2,215 2,414	2,757 2,683	562 556	2,112 1,819																
20150101 20150101	18 19	30,583	2,521 2,417	2,642 2,688	553 550	2,105 1,991																
20150101 20150101	20 21	30,750 30,129	2,391 2,390	2,634 2,696	548 547	1,808 1,629																
20150101	22		2,385	2,710 2,520	548 549	1,336																
20150101 20150102 20150102	24 1 2	24,365 22,668 21,569	2,208 2,200 2,031	2,504 2,421 2,412	550 394 397	1,395 1,395 1,412																
20150102 20150102 20150102	3		1,276	2,485	400 401	1,477																
20150102 20150102	5	20,139 21,203	1,280	2,202	403 405	1,608																
20150102 20150102	7	24,149	2,212 2,312	2,457 2,727	514 524	1,629 1,640	28033.65	2312.40	2726.93	523.85	1639.53											
20150102 20150102	9 10	30,423 32,400	2,510 2,505	2,836 3,098	971 971	1,797 2,177	30422.66 32400.49	2510.48 2504.56	2836.44 3098.12	970.75 971.10	1796.95 2177.03											
20150102 20150102	11 12	32,315 32,457	2,610 2,651	3,255 3,304	970 943	2,465 2,659	32315.17 32456.52	2610.09 2650.71	3254.74 3303.63	970.29 942.68	2465.43 2658.86											
20150102 20150102	13 14	31,652 30,907	2,503 2,497	3,084 2,919	918 907	2,597 2,249	31652.38 30906.99	2503.31 2496.94	3083.88 2919.44	918.14 906.80	2597.16 2249.33								AILY RETU			
20150102	15 16		2,641 2,638	3,100 3,582	967 1,057	1,787 1,300	31213.30	2641.43	3099.60	966.92	1787.28	31175.14	2528.74	3040.35	896.32	2171.45	0.27	0.41	0.05	0.52	-0.29	
20150102	17 18	33,548 36,985	2,640 2,648	3,491 3,626	1,235	1,057 1,130																
20150102 20150102	19 20	36,735	2,652 2,661	3,491 3,524	1,350 1,350	1,186 1,183																
20150102 20150102 20150102	21 22 23	34,790 31,997 28,976	2,659 2,509 2,507	3,364 3,275 2,374	1,350 931 933	997 921 851																
20150102 20150102 20150103	24 1	26,093 23,514	2,198 2,186	2,218 2,235	934 677	885 1,011																
20150103 20150103 20150103	2		2,185 1,544	2,302 2,326	433 434	1,023																
20150103 20150103	4	20,228 20,575	1,247	2,346 2,355	431 431	1,077																
20150103 20150103	6 7	21,042 23,140	1,539 2,174	2,356 2,343	431 572	1,141 1,085																
20150103 20150103	8 9	25,834 27,986	2,168 2,474	2,355 2,479	897 622	1,090 1,292	25834.35 27985.98	2473.75	2355.43 2479.14	897.13 622.36	1089.93 1292.25											
20150103 20150103	10 11	30,093 30,383	2,468 2,342	2,709 3,162	853 829	1,636 1,857	30093.02 30382.63	2468.27 2342.09	2708.96 3161.51	853.26 828.54	1635.94 1856.68											
20150103 20150103	12		2,339 2,169	3,167 3,370	829 562	2,230 2,297	30553.11 29880.44	2339.34 2169.06	3167.27 3369.58	828.95 561.92	2230.32 2296.76											
20150103	15	28,800 28,936	2,225	3,035 2,907	562 828	2,140 1,934	28799.69 28935.75	2225.33 2274.29	3034.55 2907.31	561.61 828.35	2139.80 1934.25	29058.12	2307.55	2897.97	747.76	1809.49	-0.07	-0.09	-0.05	-0.18	-0.18	
20150103 20150103 20150103	16 17 18	29,222 30,973 34,345	2,591 2,631 2,703	3,117 3,236 3,502	484 544 724	1,652 1,603 1,833																
20150103 20150103	19 20	35,056 34,842	2,719	3,403 3,493	552 557	2,045																
20150103 20150103	21 22	33,097 30,690	2,464 2,396	3,288 2,790	559 492	2,128																
20150103 20150103	23 24	28,221 25,817	2,396 2,214	2,789 2,790	492 491	2,335 2,371																
20150104 20150104	1 2	23,210	1,797 1,259	2,632 2,272	338 337	2,542 2,621																
20150104 20150104	3 4	20,786 20,482	1,258 1,258	2,086 2,055	335 334	2,662 2,607																
20150104 20150104	5 6	20,151 20,409	1,260 1,265	1,973 1,887	331 327	2,446 2,235																
20150104 20150104	7 8	21,275 22,803	1,271 2,212	2,075 1,956	323 438	1,969 1,707	22803.19	2212.24	1956.35	438.08	1706.75											
20150104	10	24,090 26,322	2,221	1,985 2,159	439 438	1,725	24089.96 26322.19	2224.63	1984.52 2158.55	438.68 438.23	1724.69											
20150104 20150104 20150104	11 12 13	27,148 27,796 27,850	2,231 2,240 2,251	2,259 2,403 2,454	440 441 443	2,212 2,331 2,276	27148.04 27795.66 27849.89		2259.09 2403.26 2454.16	439.85 440.66 442.54	2212.03 2331.49 2275.52											
20150104 20150104 20150104	14 15	26,467 26,047	2,252 2,237	2,510 2,621	444 443	2,379 2,309	26467.19 26047.00	2252.28	2510.20 2620.79	443.72 443.23	2379.44 2308.94	26065.39	2233.70	2293.36	440.62	2112.77	-0.11	-0.03	-0.23	-0.53	0.15	
20150104 20150104 20150104	16 17	26,068 27,367	2,257 2,257 2,299	2,488 2,590	481 483	2,036 1,886	23047.00	2200.00	2020.18	170.23	2000.34	20003.39	£200.10	2200.00	++0.02	2112.11	-0.11	-0.03	-0.23	-0.03	0.15	
20150104 20150104	18 19		2,428 2,468	2,871 2,879	554 559	2,016 2,046																
20150104 20150104	20 21	32,017 31,345	2,481 2,482	2,927 2,929	587 615	1,948 1,931																
20150104 20150104	22 23	29,622 27,205	2,271 2,271	2,739 2,606	742 490	1,942 1,991																
20150104 20150105	24	24,575 22,331	2,277 1,597	2,624 2,472	492 338	2,134																
20150105	3		1,600 965	2,433 2,520	337 339	2,042																
20150105 20150105 20150105	5 6		969 969 1.056	2,226 2,236 2,433	338 335 334	2,102 2,131 2,189																
20150105 20150105 20150105	7 8	21,039 23,972 27,989	1,056 1,604 1,894	2,433 2,357 2,511	334 333 574	2,189 2,200 2,129	27989.05	1893.75	2510.85	574.43	2129.25											
20150105 20150105 20150105	9		1,894 1,896 1,898	2,511 2,690 2,965	971 973	2,129 2,508 2,948	30444.71 32212.70	1893.75 1895.84 1898.11	2690.14 2965.41	970.71 973.12	2129.25 2507.77 2948.04											
20150105 20150105 20150105	11 12	32,142	1,902	3,161 3,407	927 861	3,234 3,714	32141.71 32038.51	1901.70 1602.96	3160.86 3407.29	926.92 860.91	3233.63 3714.25											
20150105 20150105 20150105	13	31,607 30,649	1,622 1,660	3,505 3,290	475 474	4,002 3,813	31607.48 30649.18	1622.35	3505.12 3290.24	475.49 474.00	4001.73 3813.26											
20150105 20150105 20150105	15	31,073 31,753	1,981 2,205	3,319 3,644	931 605	3,378 2,827	31072.72		3318.68	931.43	3377.98	31019.50	1806.99	3106.07	773.38	3215.74	0.17	-0.21	0.30	0.56	0.42	
20150105 20150105	17	33,298 37,010	2,249 2,348	3,410 3,577	1,160 1,378	2,424 2,531																
20150105 20150105	19 20	37,271 36,890	2,644 2,500	3,460 3,300	1,372 1,368	2,310 2,219																
20150105 20150105	21 22	34,936 32,416	2,496 2,496	3,214 2,507	1,052 939	1,932 1,770																
20150105 20150105	23 24	25,934	2,191 2,191	2,165 2,150	905 547	1,611 1,601																
20150106 20150106	2	23,294 21,923	2,314	1,779	778 514	1,681																
20150106 20150106	4	20,236	1,687	1,828	393 398	1,697																
20150106 20150106	5 6	20,696	1,398	1,521 1,885	400 403	1,908 1,968					9											
20150106 20150106	7 8 9	22,413 23,765 24,914	2,333 2,324 2,324	1,888 1,892 2,063	402 330 328	2,076 1,942	23764.81 24913.61	2324.03 2323.87	1891.99 2063.10	330.20 327.97	1942.04 2140.26											
20150106 20150106 20150106	10 11		2,324 2,323 2,326	2,063 2,282 2,550	328 327 329	2,140 2,636 2,879	26490.65 27275.95	2323.87 2323.04 2326.40	2063.10 2281.74 2549.52	327.97 327.08 328.97	2140.26 2635.94 2878.75											
20150106 20150106 20150106	12	27,276 27,834 27,698	2,329 2,331	2,859 2,859	334 337	3,198 3,290	27833.88 27697.79		2858.65 2945.09	333.61 337.03	3198.14 3290.07											
20150106 20150106 20150106	14 15	26,173 25,358	2,320 2,316	2,852 2,637	335 333	2,942 2,430	26173.10 25357.94		2852.07 2637.50	335.31 333.00	2942.11 2429.57	26188.47	2324.14	2509.96	331.65	2682.11	-0.17	0.25	-0.21	-0.85	-0.18	
20150106 20150106	16 17	25,635 27,162	2,356 2,650	2,530 2,259	328 392	1,885 1,474																